DUSO Mathematics League 2014 - 2015

Contest #2.

Calculators are not permitted on this contest.

Part I. ALGEBRA I Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.

- **2 1.** Compute the ordered pair of numbers (c,d) such that 4c + 19 = -d and -3c + 2d = 28.
- **2 2.** Compute all values of x for which $\frac{x^3 + x^2 4x 4}{x^3 x^2 4x + 4} = 0$.

DUSO Mathematics League 2014 - 2015

Contest #2.

Calculators are not permitted on this contest.

Part II. GEOMETRY Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.

- **2 3.** Suppose that \overline{PQ} has endpoints P(5,-2) and Q(-3,10). The point R is on \overline{PQ} and divides it such that PR: RQ = 3:1. Compute the coordinates of R.
- **2 4.** The sides of a triangle are in the ratio 8:15:17. The area of the triangle (in square inches) is numerically equal to its perimeter (in inches). Compute the length of the longest side (in inches).

DUSO Mathematics League 2014 - 2015

Contest #2.

Calculators are not permitted on this contest.

Part III. ALGEBRA II / ADVANCED TOPICS Time Limit: 10 minutes
The word "compute" calls for an exact answer in simplest form.

- **2 5.** Compute all solutions to $9^{x^2+8x} = 3^{-24}$.
- **2 6.** In $\triangle ABC$, c = 6, b = 8, $m \angle B = 34.7^{\circ}$, and $m \angle C = 25.3^{\circ}$. Compute $b \cos C + c \cos B$.

Author: George Reuter - coachreu@gmail.com - Reviewer: Michael Curry - currymath@gmail.com

DUSO Mathematics League 2014 - 2015

Contest #2. TEAM ROUND Calculators are not permitted on this contest.

T-1. Suppose that $\sqrt{48-2\sqrt{407}}$ can be expressed as $\sqrt{A}-\sqrt{B}$ for counting numbers A and B where A>B. Compute A-B.

T-2. The three-digit number $N = \underline{ABC}$ is 7 times the two-digit number \underline{AC} . Compute the greatest possible value of N. Note: A, B, and C are digits, so that A is the hundreds digit of N and the tens digit of AC.

T-3. In $\triangle TRI$, TR = 4, TI = 8, and $RI = 4\sqrt{3}$. A is on \overline{TI} and N is on \overline{RI} such that $\triangle RAN$ is equilateral. Compute the area of $\triangle RAN$.

 $Author: \ George \ Reuter - coachreu@gmail.com - Reviewer: \ Michael \ Curry - currymath@gmail.com$

DUSO Mathematics League 2014 - 2015

CONTEST #2.

SOLUTIONS

- **2 1.** (-6,5) Substitute d = -4c 19 (from the first equation) into the second equation to obtain -3c + 2(-4c 19) = 28. Solving this yields $-11c 38 = 28 \rightarrow c = -6$. Back-substituting yields d = 5. The desired ordered pair is (-6,5).
- **2 2.** [-1] Factoring (by grouping?) the numerator and the denominator helps to rewrite the left side of the equation as $\frac{(x^2-4)(x+1)}{(x^2-4)(x-1)}$. Recognize that x=2 and x=-2 would result in $\frac{0}{0}$, which is indeterminate. Therefore, the only value of x that makes the numerator zero and the denominator non-zero is x=-1.
- **2 3.** (-1,7) The point R is 3/4 of the way from P to Q. Therefore, the x-coordinate is $5 + \frac{3}{4} \cdot -8 = -1$ and the y-coordinate is $-2 + \frac{3}{4} \cdot 12 = 7$. The desired coordinates are (-1,7).
- **2 4.** $\boxed{\frac{34}{3}}$ The perimeter of the triangle is 40x for some x. The triangle is a right triangle (Pythagoras told me so), so its area is $0.5(8x)(15x) = 60x^2$. We equate the two expressions to obtain $60x^2 = 40x$, which solves to give $x = \frac{2}{3}$. Then, we have the largest side as $17 \cdot \frac{2}{3} = \frac{34}{3}$.
- **2 5.** $[\{-2, -6\}]$ must have both Recognizing that $9 = 3^2$, the given equation may be expressed as $9^{x^2+8x} = 9^{-12}$. Equating exponents, solve $x^2 + 8x = -12 \rightarrow x^2 + 8x + 12 = 0 \rightarrow (x+2)(x+6) = 0$. The solutions are $\{-2, -6\}$.
- **2 6.** $2\sqrt{37}$ The reader should be convinced (after perhaps drawing in an altitude to \overline{BC}) that $b\cos C + c\cos B$ is really just the length a. Note also that $m\angle A = 120^{\circ}$. Use the Law of Cosines to obtain $a^2 = 8^2 + 6^2 2 \cdot 8 \cdot 6 \cdot (-1/2)$, so $a = \sqrt{148} = 2\sqrt{37}$.

T-1. Suppose that $\sqrt{48-2\sqrt{407}}$ can be expressed as $\sqrt{A}-\sqrt{B}$ for counting numbers A and B where A>B. Compute A-B.

T-1Sol. 26 Equating the two given expressions and squaring both sides yields $48 - 2\sqrt{407} = A + B - 2\sqrt{AB}$. This gives two equations: A + B = 48 and $AB = 407 = 37 \cdot 11$. Therefore, A = 37 and B = 11. The difference A - B = 26.

T-2. The three-digit number $N = \underline{ABC}$ is 7 times the two-digit number \underline{AC} . Compute the greatest possible value of N. Note: A, B, and C are digits, so that A is the hundreds digit of N and the tens digit of AC.

T-2Sol. 105 We have that 100A + 10B + C = 7(10A + C), which implies $30A + 10B - 6C = 0 \rightarrow 3C = 5(3A + B)$. Since the right side of this last equation is divisible by 5, so is the left, and so C = 5. That makes 3A + B = 3, and thus A = 1 and B = 0. The only solution has N = 105.

T-3. In $\triangle TRI$, TR=4, TI=8, and $RI=4\sqrt{3}$. A is on \overline{TI} and N is on \overline{RI} such that $\triangle RAN$ is equilateral. Compute the area of $\triangle RAN$.

T-3Sol. $\boxed{3\sqrt{3}}$ Note that $\triangle RAN$ is equilateral, so its area is given by $\frac{s^2\sqrt{3}}{4}$, where s=RA. Note also that $m\angle ARN=60^\circ$, so $m\angle TRA=30^\circ$, and thus $m\angle TAR=90^\circ$. Therefore, $RA=4\sin 60^\circ=2\sqrt{3}$. Now, the area of $\triangle RAN=(2\sqrt{3})^2\frac{\sqrt{3}}{4}=3\sqrt{3}$.